X-s-SEMIPERMUTABLE SUBGROUPS OF FINITE GROUPS

LIPING HAO, YI LU, HONGGAO ZHANG and WENBIN GUO

Department of Mathematics Xuzhou Normal University Xuzhou, 221116 P. R. China e-mail: wbguo@xznu.edu.cn

Abstract

Let X be a non-empty subset of a group G. A subgroup A of G is said to be X-ssemipermutable in G, if A has a supplement T in G such that for every Sylow subgroup T_p of T there exists an element $x \in X$ such that $AT_p^x = T_p^x A$. In this paper, we use X-s-semipermutable subgroup to study the structures of some finite groups.

1. Introduction

All groups considered in this paper are finite.

A subgroup *A* of a group *G* is said to be *permutable* with a subgroup *B*, if AB = BA. A subgroup *A* is said to be *permutable* or *quasinormal* [2, 17] in *G*, if *A* is permutable with all subgroups of *G*. The permutable subgroup has many interesting properties, for example, Ore [17] proved that every permutable subgroup of a group is subnormal. Itô and Szép $\overline{2000 \text{ Mathematics Subject Classification: 20D10, 20D15.}$

Keywords and phrases: finite groups, X-s-semipermutable subgroups, supersoluble groups. Research is supported by NNSF of China (Grant #10771180).

Received October 13, 2009

© 2009 Scientific Advances Publishers

LIPING HAO et al.

[14] proved that for every permutable subgroup H of a group G, H / H_G is nilpotent. Kegel [15] and Deskins [1] proved that the subgroup H permute with all Sylow subgroups of G is also subnormal. Recently, Guo et al. [6, 9, 10] introduced the concept of conditionally permutable subgroup (in more generality, X-quasinormal subgroup for some non-empty subset X of G). They say that subgroups H and T of a group G are conditionally permutable (X-permutable) in G, if $HT^x = T^xH$ for some $x \in G$, (respectively, $x \in X$). Some later, they introduced again the concept of X-semipermutable subgroup [8, 16]. For a non-empty subset X of a group G, a subgroup A of G is said to be X-semipermutable in G, if A has a supplement T in G such that A is X-permutable with any subgroup of T. By using these concepts, some interesting results have been obtained (see, for example, [5-12, 16]).

As a continuation, we now give the following definition.

Definition 1.1. Let A, B be subgroups of a group G and X be a nonempty subset of G. Then A is said to be X-s-semipermutable in G, if A has a supplement T in G such that A is X-permutable with all Sylow subgroups of T.

Throughout this paper, we will use $X_s(A)$ to denote the set of all such supplements T of A in G that A is X-permutable with all Sylow subgroups of T. Obviously, A is X-s-semipermutable in G, if and only if $X_s(A) \neq \emptyset$.

In the present paper, we study the influence of X-s-semipermutable subgroups on the structure of finite groups.

All unexplained notation and terminology are standard. The reader is referred to [3, 18].

2. Preliminaries

In this section, we give some basic properties of *X*-*s*-semipermutable subgroups and also cite some known results, which are used in the sequel.

Lemma 2.1. Let A and X be subgroups of G and $N \triangleleft G$. Then:

 If H is a permutable subgroup of G and A is X-s-semipermutable in G, then H A is an X-s-semipermutable subgroup of G.

(2) If A is X-s-semipermutable in G, and $T \in X_s(A)$, then AN / N is XN / N-s-semipermutable in G / N, and $TN / N \in (XN / N)_s(AN / N)$.

(3) If A / N is XN / N-s-semipermutable in G / N, and $T / N \in (XN / N)_s(A / N)$, then A is X-s-semipermutable in G and $T \in X_s(A)$.

(4) If A is X-s-semipermutable in G, $A \leq D \leq G$, and $X \leq D$, then A is X-s-semipermutable in D.

(5) If $T \in X_s(A)$ and $A \leq N_G(X)$, then $T^x \in X_s(A)$, for any $x \in G$.

(6) If A is X-s-semipermutable in G and $X \leq D$, then A is D-s-semipermutable in G.

Proof. (1) Let $T \in X_s(A)$. Then G = AT = HAT and for any Sylow subgroup T_p of T, we have $AT_p^x = T_p^x A$, for some $x \in X$. This implies that $HAT_p^x = T_p^x HA$ and also $T \in X_s(HA)$.

(2) Obviously, G / N = (A / N)(TN / N). Let $p \in \pi(TN / N)$ and T_pN / N be a Sylow *p*-subgroup of TN / N, where T_p be a Sylow *p* subgroup of *T*. Then $AT_p^x = T_p^x A$, where $x \in X$. It follows that $(AN / N)(T_pN / N)^{Nx} = (T_pN / N)^{Nx}(AN / N)$. Therefore, $TN / N \in (X N / N)_s(AN / N)$.

(3) Since $T/N \in (XN/N)_s(A/N)$, G/N = (A/N)(T/N) = AT/N, and so G = AT. Take T_p be a Sylow *p*-subgroup of *T* for any $p \in \pi(T)$. Then T_pN/N be a Sylow *p*-subgroup of T/N and $(A/N)(T_pN/N)^{Nx}$ $= (T_pN/N)^{Nx}(A/N)$, for some $Nx \in XN/N$. This implies that $AT_p^x = T_p^x A$ and $x \in X$. Thus $T \in X_s(A)$. (4) Let T be a supplement of A in G and $T \in X_s(A)$. Then $D = D \cap AT = A(D \cap T)$. Take a Sylow p-subgroup P of $D \cap T$, for any $p \in \pi$ $(D \cap T)$. Then there exists a Sylow p-subgroup T_p of T such that $P = D \cap T_p$. Since $AT_p^x = T_p^x A$ for some $x \in X$, $AP^x = A(D \cap T_p)^x = D \cap AT_p^x = D \cap T_p^x A = (D \cap T_p)^x A = P^x A$. Thus A is X-s-semipermutable in D.

(5) Since $T \in X_s(A)$, $G = AT = AT^x$, for any $x \in G$ (see the following Lemma 2.2) and so T^x is also a supplement of A in G. It is easy to see that $T^x = T^a$ for some $a \in A$. Let P be a Sylow p-subgroup of T^a , where $p \in \pi(T^a)$. Then $P^{a^{-1}} \in Syl_p(T)$. Thus, there exists an element $d \in X$ such that $A(P^{a^{-1}})^d = (P^{a^{-1}})^d A$. Then $[A(P^{a^{-1}})^d]^a = [(P^{a^{-1}})^d A]^a$ $A^a(d^{-1})^a(P^{a^{-1}})^a d^a = AP^{d^a} = P^{d^a}A$, and $d^a \in X$ since $A \in N_G(X)$. This shows that $T^x \in X(A)$.

(6) This part is evident.

Lemma 2.2 [4, Lemma 3.1]. Let N and L be normal subgroups of a group G. Let P/L be a Sylow p-subgroup of NL/L, and M/L be a maximal subgroup of P/L. If P_p is a Sylow p-subgroup of $P \cap N$, then P_p is a Sylow p-subgroup of N such that $D = M \cap N \cap P_p$ is a maximal subgroup of P_p and M = LD.

Lemma 2.3 [9, Lemma 3.10]. Let G be a group and p, q be distinct prime divisors of |G|. Let P be a noncyclic Sylow p-subgroup of G. If every maximal subgroup of P has a q-closed supplement in G, then G is q-closed.

Lemma 2.4 [9, Lemma 3.13]. Let A and B be subgroups of a group G such that $G \neq AB$ and $AB^x = B^xA$ for each $x \in G$. Then G has a proper normal subgroup N such that either $A \leq N$ or $B \leq N$.

Lemma 2.5. Let G be a group, P be a p-subgroup of G, and Q be a qsubgroup of G, where p, q are different primes dividing |G|. If L is a subnormal subgroup of G and PQ = QP, then $PQ \cap L = (P \cap L)$ $(Q \cap L)$.

Proof. It follows directly from [3, Lemma 3.8.2].

3. Main Results

Theorem 3.1. Let G be a group and X = F(G). Then G is supersoluble, if and only if every maximal subgroup of each noncyclic Sylow subgroup of G having no supersoluble supplement in G is X-s-semipermutable in G.

Proof. The necessity is obvious. We only need to prove the sufficiency part.

Assume that the assertion is false and let G be a counterexample of minimal order. Then:

(1) The quotient group G / R is supersoluble for any minimal normal subgroup R of G.

Assume that P/R is a noncyclic Sylow *p*-subgroup of G/R, and P_1/R is a maximal subgroup of P/R. If G_p is a Sylow *p*-subgroup of P, then G_p is a noncyclic Sylow *p*-subgroup of G and $G_pR/R = P/R$. By Lemma 2.2, $P_1 \cap G_p$ is a maximal subgroup of G_p and $P_1 = R(P_1 \cap G_p)$. If $P_1 \cap G_p$ has a supersoluble supplement T in G. Then $TR/R \cong T/T \cap R$ is a supersoluble supplement of P_1/R in G/R. If $P_1 \cap G_p$ is *X*-*s*-semipermutable in G, then by Lemma 2.1(2), $R(P_1 \cap G_p)/R = P_1/R$ is XR/R-*s*-semipermutable in G/R. This shows that the hypotheses holds for the quotient group G/R. Thus G/R is supersoluble by the choice of G.

(2) G has a unique minimal normal subgroup H and $\Phi(G) = 1$.

It is clear by (1), since the class of all supersoluble groups is a saturated formation.

(3) G is soluble and so G = [H]M, where $H = C_G(H) = O_p(G) = F(G) = X$ is not cyclic and M is a maximal supersoluble subgroup of G.

Suppose that G is not soluble. Then X = F(G) = 1 by (1). Let p be the smallest prime divisor of |H| and H_p be a Sylow *p*-subgroup of *H*. It is clear that H_p is not a cyclic group (see [18, II, Theorem 5.5]). Take some Sylow *p*-subgroup *P* of *G* such that $H_p \subseteq P$. Then *P* is not cyclic. If every maximal subgroup of P possesses a supersoluble supplement in G, then by Lemma 2.3, G is q-closed, where q is the largest prime divisor of |G|, which contradicts $F(G) \neq 1$. Therefore, by the hypothesis, there is a maximal subgroup P_1 of P, which is X-s-semipermutable in G. Let $T \in$ $X_s(P_1)$. Then for any Sylow q-subgroup Q of T, where $q \neq p$, we have $P_1Q = QP_1$. Let L be a minimal subnormal subgroup of G. Then L is a simple non-abelian group. Obviously for any $a \in L$, we have $Q^a \in$ $Syl_a(T^a)$. Moreover, Lemma 2.1(5) implies that $T^a \in X_s(P_1)$ and so $P_1Q^a = Q^a P_1$. By Lemma 2.5, $P_1Q^a \cap L = (P_1 \cap L)(Q^a \cap L) = (P_1 \cap L)$ $(Q \cap L)^a$. Obviously, $(P_1 \cap L)(Q \cap L)^a \neq L$ since the left is soluble. It follows from Lemma 2.4 that L is not a simple group, which is a contradiction. Thus *G* is a soluble group. The rest part is clear.

(4) H is not a Sylow subgroup of G.

Assume that H is a Sylow subgroup of G. Clearly, H is not a cyclic subgroup. Let H_1 be a maximal subgroup of H. By the hypothesis, H_1 either possesses a supersoluble supplement T in G or is X-ssemipermutable in G. In the first case, $H = H \cap H_1T = H_1(H \cap T)$ and consequently $H \cap T \neq 1$. Moreover, since H is abelian, obviously $H \cap T$ $\leq HT = G$ and so $H \cap T = H$, which implies that T = G is supersoluble, a contraction. Therefore, we may assume that there exists a subgroup $T \in X_s(H_1)$, that is, $G = H_1T$, and for any $q \neq p$ and any Sylow q-subgroup Q of T, we have $H_1Q^x = Q^xH_1$ for some $x \in X = H$. It follows that $H_1Q = QH_1$ since $H = C_G(H)$. Now, since H_1 is a subnormal Sylow subgroup of H_1Q , $Q \leq N_G(H_1)$. This induces that $H_1 \leq G$, which contradicts the minimal normality of H.

(5) Final contradiction.

Let q be the largest prime divisor of |G|. Suppose that p = q. Then since $G \mid H$ is supersoluble and $H = O_p(G)$, H is a Sylow p-subgroup of G, a contradiction. Hence, p < q. Let P be a Sylow p-subgroup (clearly, Pis not cyclic) and Q be a Sylow q-subgroup of G. It is easy to see that every maximal subgroup P_1 of P containing H has a supersoluble supplement in G. If every maximal subgroup of P not containing H also has a supersoluble supplement T in G, then by Lemma 2.3, $Q \leq G$ and so $Q \leq F(G) = H$, a contradiction. This shows that P has a maximal subgroup P_1 such that $P = HP_1$ and P_1 is X-s-semipermutable in G. Take a subgroup $T \in X_s(P_1)$, then $G = P_1T$ and for any Sylow rsubgroup R of T, where $r \neq p$, we have $P_1R^x = R^xP_1$ for some $x \in X$. Let $D = P_1 \langle R^x \mid R \in Syl_r(T), r \neq p \rangle$, then G = HD and $H \cap D \leq G$. Obviously, $D \cap H \neq H$ and so $H \cap D = 1$. It follows that $H \cap P_1 = 1$, and thereby $|H| = |P : P_1| = p$. This contradiction completes the proof.

Theorem 3.2. Let G be a group and X = F(G). Then the following are equivalent:

(1) Every maximal subgroup of each Sylow subgroup of G is X-ssemipermutable in G.

(2) G = [D]M is a supersoluble group, where D and M are nilpotent Hall subgroups of G, and every maximal subgroup of D is normal in G.

Proof. (1) \Rightarrow (2). Assume that this is not true and let G be a counterexample of minimal order. Then:

(1) G is supersoluble (It follows directly from Throrem 3.1) and clearly G is not nilpotent.

(2) Let $D = G^{\mathfrak{N}}$ is the nilpotent residual of G. Then D is a nilpotent Hall subgroup of G.

Obviously, $D \subseteq G'$. Since G is supersoluble, $G' \subseteq F(G)$, and hence $D \subseteq X = F(G)$. We now prove that D is a Hall subgroup of G. We first suppose that G has two minimal normal subgroups H and R such that His a *p*-subgroup and *R* is a *q*-group with $p \neq q$. Without loss of generality, we may suppose that $H \subseteq D$. Using the same argument as in Theorem 3.1, we know that the hypothesis is true for G/R. Hence, by the choice of G, we have $(G/R)^{\mathfrak{N}} = G^{\mathfrak{N}}R/R = DR/R$ is a Hall subgroup of G/R. Let D_p be a Sylow *p*-subgroup of *D*, then $D_p R / R$ is a Sylow *p*-subgroup of DR / R. Consequently, $D_p R / R$ is a Sylow *p*-subgroup of G / R. Therefore, D_p be a Sylow *p*-subgroup of *G*. Assume that $D_p \neq D$ and let D_r be a Sylow r-subgroup of D, where $r \neq p$. We consider the factor group G/H. Then we conclude, as above, that D_r be a Sylow *r*-subgroup of G. This implies that D is a Hall subgroup of G. Now, consider the case that all the minimal normal subgroups of G are p-groups. In this case, by virtue of the supersolubility of G, $F(G) = O_p(G)$ is a Sylow p-subgroup of G and so $D \subseteq O_p(G)$. Let H be a minimal normal subgroup of G, if $H \neq D$, then by induction D is a Sylow p-subgroup of G since G/Hsatisfies the hypothesis.

Now, it remains only to consider the case H = D. If $\Phi = \Phi(O_p(G)) \neq 1$, then obviously G / Φ satisfies the hypothesis and so $\Phi D / \Phi = \Phi G^{\mathfrak{N}} / \Phi = (G / \Phi)^{\mathfrak{N}}$ is a Hall subgroup of G / Φ . If $H \subseteq \Phi$, then $G / \Phi \cong (G / G^{\mathfrak{N}}) / (\Phi / G^{\mathfrak{N}})$ is nilpotent, which leads to that G is nilpotent since $\Phi \subseteq \Phi(G)$. The contradiction shows that $H \not\subseteq \Phi$ and so $H\Phi / \Phi$ is a non-identity *p*-group. Since, $(G / \Phi)^{\mathfrak{N}} = G^{\mathfrak{N}} \Phi / \Phi = H\Phi / \Phi$

is a Hall subgroup of G / Φ , $H\Phi / \Phi$ is a Sylow *p*-subgroup of G / Φ . It follows that $H\Phi = O_p(G)$ and so $H = D = O_p(G)$ is a Sylow subgroup of *G*.

Now, we assume that $\Phi(O_p(G)) = 1$, and then $O_p(G) = F(G) = C_G$ (F(G)) is an elementary abelian *p*-group. We show that every proper subgroup *T* of $O_p(G) = F(G)$ is normal in *G*. Assume that *T* is a maximal subgroup of $O_p(G)$. Since $O_p(G)$ is a Sylow *p*-subgroup of *G*, by the hypothesis, *T* is *X*-*s*-semipermutable in *G*. By using the same argument as in proof of Theorem 3.1, we can see that $T \leq G$. Assume that *T* is a nonmaximal subgroup of $O_p(G)$. We prove that *T* is also normal in *G*. Clearly, it needs only to show that *T* is the intersection of all maximal subgroups T_i of $O_p(G)$ containing *T*. Since, $\Phi(O_p(G)) = 1$, $O_p(G)$ is an elementary abelian *p*-subgroup. Hence, $O_p(G)/T$ is also an elementary abelian subgroup and so $\Phi(O_p(G)/T) = 1$. It follows that *T* is the intersection of all maximal subgroups of $O_p(G)$ containing *T*.

By [3, Theorem 1.8.17], $O_p(G) = \langle a \rangle \times \langle a_2 \rangle \times \cdots \times \langle a_t \rangle$, where $\langle a_i \rangle$ is a minimal normal subgroup of G. Let $\langle a \rangle = H$ and $a_1 = aa_2 \cdots a_t$, then clearly $O_p(G) = \langle a_1 \rangle \times \langle a_2 \rangle \times \cdots \times \langle a_t \rangle$. Because G is not nilpotent and $D = G^{\mathfrak{N}} \subseteq O_p(G), O_p(G) \not\subseteq Z(G)$. Hence, there exists an index i such that $a_i \notin Z(G)$. Then G has an element g such that (|g|, p) = 1 and $g \notin$ $C_G(a_i)$. Let $y = [[a_i, y_1], \cdots y_n]$, where $y_1 = \cdots = y_n = g$, and n = c(G / D) is the nilpotent class of G / D. Then $y \notin H = D$. On the other hand, $y \notin \langle a_i \rangle$ and $y \neq 1$ since $g \notin C_G(a_i)$. Hence $\langle a_i \rangle = H$, which is impossible. This completes the proof of (2).

(3) G = [D]M, where D and M are nilpotent Hall subgroups of G. It follows directly from (2) and the well known Schur-Zasenhaus theorem.

(4) To completes the proof of (1) \Rightarrow (2).

LIPING HAO et al.

Let M be an arbitrary maximal subgroup of D. Then |D:M| = p, for some prime p. Let M_p be a Sylow p-subgroup of M. Then $M = M_p M_{p'}$, where $M_{p'}$ is a Hall p'-subgroup of D. Since $M_{p'}$ char $D \leq G$, $M_{p'} \leq G$. Thus, in order to show that $M \leq G$, we only need to prove that M_p is normal in G. It is clear that M_p is a maximal subgroup of the Sylow psubgroup D_p of D. By the hypothesis, there exists a subgroup $T \in X_s$ (M_p) , that is, for any Sylow q-subgroup Q of T, there exists $x \in X$ such that $M_pQ^x = Q^x M_p$. Clearly, $M_p \leq D_p$ char $D \leq G$. This implies that M_p is a subnormal Hall subgroup of M_pQ^x , and consequently $Q^x \in$ $N_G(M_p)$. Moreover, obviously $M_p \leq D_p$. Thus $M_p \leq G$. This completes the proof of (1) \Rightarrow (2).

(2) \Rightarrow (1) Let $p \in \pi(G)$ and P_1 be a maximal subgroup of a Sylow *p*-subgroup of *G*. We prove that P_1 is *X*-*s*-semipermutable in *G*. Firstly, it is clear that *G* is itself a supplement of P_1 in *G*. Let *Q* be an arbitrary Sylow *q*-subgroup of *G* and $\pi_1 = \pi(D), \pi_2 = \pi(M)$. We now distinguish the following possible cases:

(i) $q \in \pi_1$. In this case, $Q \leq G$ and so $P_1Q = QP_1$.

(ii) $p = q \in \pi_2$. In this case, $P = Q^y$ for some $y \in G$. Consequently, $P_1Q^y = Q^yP_1$. Let $\Sigma = \{Q_1, \dots, Q_n\}$ be a Sylow systems of G containing Q and $N = N_G(\Sigma)$. By [13, VI, Theorem 11.10], N covers all central principal factors of G. Since G is supersoluble, $G' \subseteq X = F(G)$. Thus G = G'N = XN. Now let y = xn, where $x \in X$ and $n \in N$, then we have $P_1Q^x = Q^xP_1$.

(iii) $p, q \in \pi_2$ and $p \neq q$. Since G is soluble, there exists $y \in G$ such that $PQ^y = Q^y P$. Let $D_1 = PQ^y$. Then $D_1 \leq M^g$ for some $g \in G$. Since M is nilpotent, D_1 is nilpotent. Hence $Q^y \leq D_1$ and thereby, $P_1Q^y =$

 $Q^{y}P_{1}$. Using the same arguments in the proof of (ii), one can show that $P_{1}Q^{x} = Q^{x}P_{1}$ for some $x \in X$.

(iv) $p \in \pi_1, q \in \pi_2$. In this case, $P \trianglelefteq G$. Let $D_{p'}$ be a Hall p'-subgroup of D. Then $D_{p'} \trianglelefteq G$ since D is nilpotent. Obviously, $M_1 = P_1 D_{p'}$ is a maximal subgroup of D. Consequently, $M_1 \trianglelefteq G$. Therefore, $P \cap M_1 = P \cap P_1 D'_p = P_1(P \cap D'_p) = P_1 \trianglelefteq G$. This implies that $P_1 Q = QP_1$.

Thus, the proof is completed.

References

- W. E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82 (1963), 125-132.
- [2] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin-New York, 1992.
- [3] W. Guo, The Theory of Classes of Groups, Science Press, Kluner Academic Publishers, Beijing-New York-Dordrecht-Boston, 2000.
- [4] W. Guo, K. P. Shum and A. N. Skiba, G-covering subgroup systems for the classes of supersoluble and nilpotent groups, J. Israel Math. 138(1) (2003), 125-138.
- [5] W. Guo, K. P. Shum and A. N. Skiba, G-covering systems of subgroups for the classes of p-supersoluble and p-nilpotent groups, J. Siberian Math. 45(3) (2004), 75-92.
- [6] W. Guo, K. P. Shum and A. N. Skiba, Conditionally permutable and supersolubility of finite groups, Southeast Asian Bull. Math. 29(2) (2005), 493-510.
- [7] W. Guo, K. P. Shum and A. N. Skiba, Criterions of supersolubility for products of supersoluble groups, Publ. Math. Debrecen 68(3-4) (2006), 433-449.
- [8] W. Guo, K. P. Shum and A. N. Skiba, X-semipermutable subgroups of finite groups, J. Algebra 315 (2007), 31-41.
- [9] W. Guo, A. N. Skiba and K. P. Shum, X-quasinormal subgroups, J. Siberian Math. 48(4) (2007), 593-605.
- [10] W. Guo and A. N. Skiba, On X-permutable subgroups of finite groups, J. Xuzhou Normal University 27(2) (2009), 16-24.
- J. Huang and W. Guo, s-Conditionally permutable subgroups of finite groups, Chin. Ann. Math. 28A(1) (2007), 17-26 (in chinese).

LIPING HAO et al.

- [12] B. Hu and W. Guo, c-semipermutable subgroups of finite groups, J. Siberian Math. 48(1) (2007), 180-188.
- [13] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- [14] N. Itô and J. Szép, Uber die quasinormalteiler von Endliche Gruppen, Acta Sci. Math. 23(1-2) (1962), 168-170.
- [15] O. H. Kegel, Sylow-Gruppen and subnormalteiler Endliche Gruppen, Mat. Z. 87(1) (1962), 205-221.
- [16] B. Li and A. N. Skiba, New characterizations of finite supersoluble groups, Science in China, Series A 51(5) (2008), 827-841.
- [17] O. Ore, Contributions in the theory of groups of finite order, J. Duke Math. 5 (1939), 431-460.
- [18] M. Xu, An Introduction of Finite Group (second edition), Science Press, Beijing, 1999, 1-287 (in chinese).